3.5.17 \(\int x^5 (a^2+2 a b x^2+b^2 x^4)^{5/2} \, dx\)

Optimal. Leaf size=119 \[ \frac {\sqrt {a^2+2 a b x^2+b^2 x^4} \left (a+b x^2\right )^7}{16 b^3}-\frac {a \sqrt {a^2+2 a b x^2+b^2 x^4} \left (a+b x^2\right )^6}{7 b^3}+\frac {a^2 \sqrt {a^2+2 a b x^2+b^2 x^4} \left (a+b x^2\right )^5}{12 b^3} \]

________________________________________________________________________________________

Rubi [A]  time = 0.10, antiderivative size = 119, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.115, Rules used = {1111, 646, 43} \begin {gather*} \frac {\sqrt {a^2+2 a b x^2+b^2 x^4} \left (a+b x^2\right )^7}{16 b^3}-\frac {a \sqrt {a^2+2 a b x^2+b^2 x^4} \left (a+b x^2\right )^6}{7 b^3}+\frac {a^2 \sqrt {a^2+2 a b x^2+b^2 x^4} \left (a+b x^2\right )^5}{12 b^3} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^5*(a^2 + 2*a*b*x^2 + b^2*x^4)^(5/2),x]

[Out]

(a^2*(a + b*x^2)^5*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4])/(12*b^3) - (a*(a + b*x^2)^6*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4
])/(7*b^3) + ((a + b*x^2)^7*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4])/(16*b^3)

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 646

Int[((d_.) + (e_.)*(x_))^(m_)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[(a + b*x + c*x^2)^Fra
cPart[p]/(c^IntPart[p]*(b/2 + c*x)^(2*FracPart[p])), Int[(d + e*x)^m*(b/2 + c*x)^(2*p), x], x] /; FreeQ[{a, b,
 c, d, e, m, p}, x] && EqQ[b^2 - 4*a*c, 0] &&  !IntegerQ[p] && NeQ[2*c*d - b*e, 0]

Rule 1111

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Dist[1/2, Subst[Int[x^((m - 1)/2)*(a +
b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, p}, x] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p - 1/2] && Integ
erQ[(m - 1)/2] && (GtQ[m, 0] || LtQ[0, 4*p, -m - 1])

Rubi steps

\begin {align*} \int x^5 \left (a^2+2 a b x^2+b^2 x^4\right )^{5/2} \, dx &=\frac {1}{2} \operatorname {Subst}\left (\int x^2 \left (a^2+2 a b x+b^2 x^2\right )^{5/2} \, dx,x,x^2\right )\\ &=\frac {\sqrt {a^2+2 a b x^2+b^2 x^4} \operatorname {Subst}\left (\int x^2 \left (a b+b^2 x\right )^5 \, dx,x,x^2\right )}{2 b^4 \left (a b+b^2 x^2\right )}\\ &=\frac {\sqrt {a^2+2 a b x^2+b^2 x^4} \operatorname {Subst}\left (\int \left (\frac {a^2 \left (a b+b^2 x\right )^5}{b^2}-\frac {2 a \left (a b+b^2 x\right )^6}{b^3}+\frac {\left (a b+b^2 x\right )^7}{b^4}\right ) \, dx,x,x^2\right )}{2 b^4 \left (a b+b^2 x^2\right )}\\ &=\frac {a^2 \left (a+b x^2\right )^5 \sqrt {a^2+2 a b x^2+b^2 x^4}}{12 b^3}-\frac {a \left (a+b x^2\right )^6 \sqrt {a^2+2 a b x^2+b^2 x^4}}{7 b^3}+\frac {\left (a+b x^2\right )^7 \sqrt {a^2+2 a b x^2+b^2 x^4}}{16 b^3}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 83, normalized size = 0.70 \begin {gather*} \frac {x^6 \sqrt {\left (a+b x^2\right )^2} \left (56 a^5+210 a^4 b x^2+336 a^3 b^2 x^4+280 a^2 b^3 x^6+120 a b^4 x^8+21 b^5 x^{10}\right )}{336 \left (a+b x^2\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^5*(a^2 + 2*a*b*x^2 + b^2*x^4)^(5/2),x]

[Out]

(x^6*Sqrt[(a + b*x^2)^2]*(56*a^5 + 210*a^4*b*x^2 + 336*a^3*b^2*x^4 + 280*a^2*b^3*x^6 + 120*a*b^4*x^8 + 21*b^5*
x^10))/(336*(a + b*x^2))

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 13.03, size = 83, normalized size = 0.70 \begin {gather*} \frac {\sqrt {\left (a+b x^2\right )^2} \left (56 a^5 x^6+210 a^4 b x^8+336 a^3 b^2 x^{10}+280 a^2 b^3 x^{12}+120 a b^4 x^{14}+21 b^5 x^{16}\right )}{336 \left (a+b x^2\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[x^5*(a^2 + 2*a*b*x^2 + b^2*x^4)^(5/2),x]

[Out]

(Sqrt[(a + b*x^2)^2]*(56*a^5*x^6 + 210*a^4*b*x^8 + 336*a^3*b^2*x^10 + 280*a^2*b^3*x^12 + 120*a*b^4*x^14 + 21*b
^5*x^16))/(336*(a + b*x^2))

________________________________________________________________________________________

fricas [A]  time = 0.52, size = 56, normalized size = 0.47 \begin {gather*} \frac {1}{16} \, b^{5} x^{16} + \frac {5}{14} \, a b^{4} x^{14} + \frac {5}{6} \, a^{2} b^{3} x^{12} + a^{3} b^{2} x^{10} + \frac {5}{8} \, a^{4} b x^{8} + \frac {1}{6} \, a^{5} x^{6} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5*(b^2*x^4+2*a*b*x^2+a^2)^(5/2),x, algorithm="fricas")

[Out]

1/16*b^5*x^16 + 5/14*a*b^4*x^14 + 5/6*a^2*b^3*x^12 + a^3*b^2*x^10 + 5/8*a^4*b*x^8 + 1/6*a^5*x^6

________________________________________________________________________________________

giac [A]  time = 0.19, size = 104, normalized size = 0.87 \begin {gather*} \frac {1}{16} \, b^{5} x^{16} \mathrm {sgn}\left (b x^{2} + a\right ) + \frac {5}{14} \, a b^{4} x^{14} \mathrm {sgn}\left (b x^{2} + a\right ) + \frac {5}{6} \, a^{2} b^{3} x^{12} \mathrm {sgn}\left (b x^{2} + a\right ) + a^{3} b^{2} x^{10} \mathrm {sgn}\left (b x^{2} + a\right ) + \frac {5}{8} \, a^{4} b x^{8} \mathrm {sgn}\left (b x^{2} + a\right ) + \frac {1}{6} \, a^{5} x^{6} \mathrm {sgn}\left (b x^{2} + a\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5*(b^2*x^4+2*a*b*x^2+a^2)^(5/2),x, algorithm="giac")

[Out]

1/16*b^5*x^16*sgn(b*x^2 + a) + 5/14*a*b^4*x^14*sgn(b*x^2 + a) + 5/6*a^2*b^3*x^12*sgn(b*x^2 + a) + a^3*b^2*x^10
*sgn(b*x^2 + a) + 5/8*a^4*b*x^8*sgn(b*x^2 + a) + 1/6*a^5*x^6*sgn(b*x^2 + a)

________________________________________________________________________________________

maple [A]  time = 0.01, size = 80, normalized size = 0.67 \begin {gather*} \frac {\left (21 b^{5} x^{10}+120 a \,b^{4} x^{8}+280 a^{2} b^{3} x^{6}+336 a^{3} b^{2} x^{4}+210 a^{4} b \,x^{2}+56 a^{5}\right ) \left (\left (b \,x^{2}+a \right )^{2}\right )^{\frac {5}{2}} x^{6}}{336 \left (b \,x^{2}+a \right )^{5}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^5*(b^2*x^4+2*a*b*x^2+a^2)^(5/2),x)

[Out]

1/336*x^6*(21*b^5*x^10+120*a*b^4*x^8+280*a^2*b^3*x^6+336*a^3*b^2*x^4+210*a^4*b*x^2+56*a^5)*((b*x^2+a)^2)^(5/2)
/(b*x^2+a)^5

________________________________________________________________________________________

maxima [A]  time = 1.34, size = 56, normalized size = 0.47 \begin {gather*} \frac {1}{16} \, b^{5} x^{16} + \frac {5}{14} \, a b^{4} x^{14} + \frac {5}{6} \, a^{2} b^{3} x^{12} + a^{3} b^{2} x^{10} + \frac {5}{8} \, a^{4} b x^{8} + \frac {1}{6} \, a^{5} x^{6} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5*(b^2*x^4+2*a*b*x^2+a^2)^(5/2),x, algorithm="maxima")

[Out]

1/16*b^5*x^16 + 5/14*a*b^4*x^14 + 5/6*a^2*b^3*x^12 + a^3*b^2*x^10 + 5/8*a^4*b*x^8 + 1/6*a^5*x^6

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int x^5\,{\left (a^2+2\,a\,b\,x^2+b^2\,x^4\right )}^{5/2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^5*(a^2 + b^2*x^4 + 2*a*b*x^2)^(5/2),x)

[Out]

int(x^5*(a^2 + b^2*x^4 + 2*a*b*x^2)^(5/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int x^{5} \left (\left (a + b x^{2}\right )^{2}\right )^{\frac {5}{2}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**5*(b**2*x**4+2*a*b*x**2+a**2)**(5/2),x)

[Out]

Integral(x**5*((a + b*x**2)**2)**(5/2), x)

________________________________________________________________________________________